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1. Introduction

Quantum calculus, also referred to as q-calculus, is a branch of calculus that focuses on
derivatives without limits [1]. It attracts a lot of academics as it provides a crucial connection
between mathematics and physics. In the literature, there are many scientific disciplines
that have demonstrated abroad a variety of applications of quantum calculus in the theory
of numbers, orthogonal polynomials, combinatorics, relativity theory, and mechanics [2–5],
while a number of advancements involving polynomials and q-hypergeometric functions,
often employed in number theory and partitioning, began to find practical uses in a range
of different scientific areas [6–16]. The generalized q-Apostol–Bernoulli, q-Apostol–Euler,
and q-Apostol–Genocchi polynomials in two variables are given in [17], whereas the
q-Bernoulli, q-Euler, and q-Genocchi polynomials are examined in [18]. In addition, the theory
under concern has also been applied to vector spaces, combinatorial analysis, particle
physics, lie theory, nonlinear electric circuit theory, heat conduction theory, mechanical
engineering, statistics, and cosmology [19,20]. Anyhow, the significant advancement in the
theory of quantum calculus is a creation of the q-analog [3,17,18,21,22]

dqϑ(ξ) = ϑ(ξ)− ϑ(qξ),

and the q-derivative [1]

(
Dq φ

)
(ξ) :=

dq φ(ξ)

dqξ
:=

φ(ξ)− φ(qx)
(1 − q)ξ

, ξ ̸= 0,

of a function ϑ for 0 < q < 1, which opened the door for more developments in this area.
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In an effort to expand the applicability of the q-calculus theory, Chakrabarti and
Jagannathan [23] recently created the (p, q)-calculus, an enlarged version of the q-calculus.
It is important to understand that the actual quantum calculus cannot be created by
simply substituting p for q in the q-calculus. However, when p equals 1, it reduces to
q-calculus; while several scholars extensively studied and developed the (p, q)-calculus
in [17–19,21,23–38], Sadjang explored many concepts of (p, q)-integration, (p, q)-derivative,
(p, q)-Taylor formula, and a fundamental theorem of (p, q)-calculus [34,36,37]. Further
research on (p, q)-integral transformations has also been conducted in other research
projects. Sadjang [39] looked into a number of features of the (p, q)-analogs of the Laplace
transforms and how they were used to the solution of specific (p, q)-difference equations.
In addition, he examined (p, q)-difference equations and the (p, q)-analogs of the Laplace
transform. Later, a few authors used the (p, q)-Aleph function to create (p, q)-analogs of the
Laplace and Sumudu transforms. (p, q)-analogs of Laplace-type integral transformations
were developed by Jirakulchaiwong et al. in [40], and their findings were expanded to solve
multiple (p, q)-differential equations. Hermite–Hadamard inequalities for continuous
convex functions via (p, q)-calculus were studied by Prabseang et al. in [33], while
Chakrabarti and Jagannathan [23] looked into a (p, q)-oscillator realization of two-parameter
quantum algebras. Readers can check more about this subject by using [20,35,36,39–42].

This study discusses several applications and examines some (p, q)-analogs of the
gamma integral operator. It develops several convolution theorems and examines some
applications of the (p, q)-analogs of the gamma integrals to some special and elementary
functions. A few ideas, concepts, and notations from the (p, q)-calculus theory are presented
in Sections 1 and 2. The (p, q)-analogs of the gamma integrals of the (p, q)-exponential
functions, the (p, q)-trigonometric functions, and a few (p, q)-power functions of various
orders are examined in Section 3, whereas results pertaining to differential operators and
unit step functions are established in Section 4. Two pairs of convolution products and
associated convolution theorems are discussed in Section 5.

2. Preliminaries, Definitions, and Auxiliary Results

In this section, we go over some common concepts and notations in the (p, q)-calculus [33,34].
Assuming 0 < q < p ≤ 1, we consider q to be a fixed real number. Starting with the concept
of the (p, q)-analog dp,q φ(x) of the differential of a function φ,

dp,q φ(x) = φ(px)− φ(qx), (1)

the (p, q)-calculus is introduced. Consequently, we obtain the (p, q)-analog of the derivative
of φ(x) instantaneously, called (p, q)-derivative,

(
Dp,q φ

)
(x) :=

dp,q φ(x)
dp,qx

:=
φ(px)− φ(qx)

(p − q)x
, x ̸= 0, (2)

(
Dp,q φ

)
(0) = φ

′
(0) provided φ

′
(0) exists. If φ is differentiable, then Dp,q φ approaches φ

′

as both p and q tend to the value 1. The (p, q)-numbers [m]p,q and (p, q)-factorials [m]p,q!
are defined by [43]

[m]p,q =
pm − qm

p − q
and [m]p,q! = ∏n

k=1[k]p,q, [0]p,q = 1,

respectively. The (p, q)-derivative of the product of two functions φ and g satisfies the
following (p, q)-analog

Dp,q(φ(x)g(x)) = φ(px)Dp,qg(x) + g(qx)Dp,q φ(x). (3)
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Conversely, the (p, q)-integrals over the intervals [0, x] and [0, ∞) are, respectively, defined
in a series form as [36]

∫ x

0
φ(x)dp,qx = (p − q)x

∞

∑
0

qk

pk+1 φ

(
x

qk

pk+1

)
,
∣∣∣∣ p

q

∣∣∣∣ > 1, (4)

∫ ∞

0
φ(x)dp,qx = (p − q)

∞

∑
−∞

qk

pk+1 φ

(
qk

pk+1

)
,
∣∣∣∣ p

q

∣∣∣∣ > 1, (5)

given that, for any real value x, the sums converge absolutely. In a generic interval [a, b],
the (p, q)-integral is given by [24]

∫ b

a
φ(x)dp,qx =

∫ b

0
φ(x)dp,qx −

∫ a

0
φ(x)dp,qx. (6)

Alike to the q-integration by parts, the (p, q)-integration by parts is defined by ([44],
Proposition 2) as follows:

If φ and g are arbitrary functions, then

∫ b

a
φ(px)Dp,qg(x)dp,qx = g(b)φ(b)− g(a)φ(a)−

∫ b

a
g(qx)Dp,q φ(x)dp,qx. (7)

Note that b = ∞ is allowed.
Hence, due to above statement of ([44], Proposition 2), we write∫ ∞

a
φ(px)Dp,qg(x)dp,qx = lim

b−→∞
(g(b)φ(b)− g(a)φ(a))−

∫ ∞

a
g(qx)Dp,q φ(x)dp,qx. (8)

By putting p = 1 in (6) and (7), the equations, respectively, reduce to the q-integrations

∫ b

a
φ(x)dqx =

∫ b

0
φ(x)dqx −

∫ a

0
φ(x)dqx (9)

and ∫ b

0
φ(x)Dqg(x)dqx = g(b)φ(b)− g(a)φ(a)−

∫ b

0
g(qx)Dq φ(x)dqx. (10)

The two types of (p, q)-analogs of the exponential function are defined by [24]

Ep,q(x) =
∞

∑
n=0

q
n(n−1)

2
xn

[n]p,q!
(x ∈ C), (11)

and

ep,q(x) =
∞

∑
n=0

p
n(n−1)

2
xn

[n]p,q!
(|x| < 1). (12)

If we replace p = 1 in (11) and (12), then we attain the q-exponential functions Ep and ep,
respectively. Moreover, the involved (p, q)-derivatives of the (p, q)-exponential functions
are given by [24]

Dp,qep,q(nt) = nep,q(npt) and Dp,qEp,q(nt) = nEp,q(nqt). (13)

Consequently, Dp,qep,q(t) = ep,q(pt) and Dp,qEp,q(t) = Ep,q(qt). On this basis, the (p, q)-gamma
functions of the first and second kinds are, respectively, defined by [31]

Γp,q(n) = p
n(n−1)

2

∫ ∞

0
tn−1Ep,q(−qt)dp,qx and Γ̃p,q(n) = q

n(n−1)
2

∫ ∞

0
tn−1ep,q(−pt)dp,qx. (14)
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Indeed, (14) and the integration by parts yield

Γp,q(n + 1) = Γ̃p,q(n + 1) = [n]p,q!. (15)

In [24], Sadjang has defined the gamma integral operator for functions of certain exponential
growth conditions in the form

(Gn φ)(υ) =
nn

δnΓ(n)

∫ ∞

0
φ(τ)τn−1e

−nτ
υ dτ, υ ∈ [0, ∞) and n ∈ N. (16)

Herein, we introduce two (p, q)-analogs for the gamma integral operator as follows.

Definition 1. Let φ be a function of certain exponential growth conditions, then we define the
(p, q)-gamma integral operator of the first kind as

G1
n,p,q(φ, υ) = A

∫ ∞

0
φ(t)tn−1Ep,q

(
−qnt

υ

)
dp,qt, (17)

where A = nn

υnΓp,q(n)
. Alternatively, under the hypothesis of φ, we introduce the (p, q)-gamma

integral operator of the second kind as

G2
n,p,q(φ, υ) = A

∫ ∞

0
φ(t)tn−1ep,q

(
−pnt

υ

)
dp,qt, (18)

where A = nn

υnΓp,q(n)
, provided the two integrals converge.

We now go over a few properties of the previously listed analogs as follows.

Theorem 1. Let φ, φ1, and φ2 be functions of certain exponential growth conditions. Then, we have
(i) (Linearity) For real numbers α1, α1 we have

G1
n,p,q(α1 φ1(t) + α2 φ2(t), υ) = α1G1

n,p,q(φ1, υ) + α2G1
n,p,q(φ2, υ).

G2
n,p,q(α1 φ1(t) + α2 φ2(t), υ) = α1G2

n,p,q(φ1, υ) + α2G2
n,p,q(φ2, υ).

(ii) (Scaling Property) For a real number β we have

G1
n,p,q(φ(βt), υ) =

1
βn G1

n,p,q(φ(t), βυ). G2
n,p,q(φ(βt), υ) =

1
βn G2

n,p,q(φ(t), βυ).

Proof. The proof of the part (i) follows from the definition of the (p, q)-integrals. To prove

(ii) let z = βt ⇒ dp,qt =
1
β

dp,qz. Then, considering Equation (17) and inserting the given

substitution inside the integral sign yield

G1
n,p,q(φ(β), υ) = A

∫ ∞

0
φ(βt)tn−1Ep,q

(
qnt
υ

)
dp,qt

= A
∫ ∞

0
φ(z)

zn−1

βn−1 Ep,q

(
qnz
βυ

)
dp,qz

β

=
1

βn A
∫ ∞

0
φ(z)zn−1Ep,q

(
qnz
βυ

)
dp,qz

=
1

βn G1
n,p,q(φ(t), βυ).

The proof of the second equation is alike to that employed for the first equation. This ends
the proof of the theorem.
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3. The G1
n,p,q Analog of Differential Operators and Some Convolution Theorems

In the present section, we discuss the value of G1
n,p,q of (p, q)-difference operators

of the first degree and extend our results to the second-degree case. It also presents a
subsequent pair of definitions, where two operations are thereby defined for their purposes.
The proposed products are used to investigate two convolution theorems of the G1

n,p,q
analog.

Theorem 2. Let G1
n,p,q be the (p, q)-analog defined by (17). Then, we have

G1
n,p,q

(
Dp,q φ(t), υ

)
=

[n]p,q

qn−1υpn−2 G1
n(φ, pυ)−

qn−1[n − 1]p,q

υpn−1 G1
n−1,p,q(φ, pυ). (19)

Proof. To prove the first part we make use of the definition of the analog G1
n,p,q and insert

qn−1 q1−n inside the integral sign to have

G1
n,p,q

(
Dp,q φ(t), υ

)
= A

∫ ∞

0
tn−1(Dp,q φ

)
Ep,q

(
−q

nt
υ

)
dp,qt

= A
∫ ∞

0
tn−1Ep,q

(
−q

nt
υ

)(
Dp,q φ

)
dp,qt

=
A

qn−1

∫ ∞

0
(qt)n−1Ep,q

(
−q

nt
υ

)(
Dp,q φ

)
dp,qt.

By putting a = 0 and rewriting Equation (7) in the form∫ ∞

0
g(qx)Dp,q φ(x)dp,qx = lim

b−→∞
(g(b)φ(b)− g(0)φ(0))−

∫ ∞

0
φ(px)Dp,qg(x)dp,qx,

we obtain

G1
n,p,q

(
Dp,q φ(t), υ

)
=

A
qn−1 lim

b 7−→∞
φ(t)tn−1Ep,q

(
−nt

υ

)∣∣∣∣b
0

− A
qn−1

∫ ∞

0
φ(pt)Dp,q

(
tn−1Ep,q

(
−nt

υ

))
dp,qt.

Hence, the preceding equation reveals that

G1
n,p,q

(
Dp,q φ(t), υ

)
= − A

qn−1

∫ ∞

0
φ(pt)Dp,q

(
tn−1Ep,q

(
−nt

υ

))
dp,qt. (20)

However, using the idea of the (p, q)-derivative of the exponential function and the
(p, q)-derivative of the product of two functions reveal that

Dp,q

(
tn−1Ep,q

(
−tn

υ

))
= (tp)n−1Dp,qEp,q

(
−tn

υ

)
+ Ep,q

(
−tqn

υ

)
Dp,qtn−1.

Hence, we rewrite the preceding equation in the form

Dp,q

(
tn−1Ep,q

(
−tn

υ

))
= (tp)n−1

(
−n
υ

)
Ep,q

(
−tqn

υ

)
+ [n − 1]p,qtn−2Ep,q

(
−tqn

υ

)
. (21)

Therefore, inserting the preceding value of the derivative yields
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G1
n,p,q

(
Dp,q φ(t), υ

)
=

−A
qn−1

∫ ∞

0
φ(pt)(tp)n−1

(
−n
υ

)
Ep,q

(
−tq[n]p,q

υ

)
dp,qt

− A
qn−1 [n − 1]p,q

∫ ∞

0
φ(pt)tn−2Ep,q

(
−tq[n]p,q

υ

)
dp,qt

=
[n]p,q

υqn−1 A
∫ ∞

0
φ(pt)(tp)n−1Ep,q

(
−tqn

υ

)
dp,qt

−
A[n − 1]p,q

qn−1

∫ ∞

0
φ(pt)tn−2Ep,q

(
−tqn

υ

)
dp,qt.

Let pt = z → t =
z
p
→ dp,qt =

dp,qz
p

, then we have

G1
n,p,q

(
Dp,q φ(t), υ

)
=

[n]p,q

qn−1υpn−2 A
∫ ∞

0
φ(z)zn−1Ep,q

(
− zqn

pυ

)
dp,qz

−
[n − 1]p,q

qn−1 pn−1 A
∫ ∞

0
φ(z)zn−2Ep,q

(
− zqn

pυ

)
dp,qz.

Therefore, we have obtained

G1
n,p,q

(
Dp,q φ(t), υ

)
=

[n]p,q

qn−1υpn−2 G1
n(φ, pυ)−

qn−1[n − 1]p,q

υpn−1 G1
n−1,p,q(φ, pυ). (22)

This ends the proof of the theorem.

Theorem 3. Let G1
n,p,q be the (p, q)-analog defined by (17). Then, we have

G1
n,p,q

(
D2

p,q φ, υ
)

=

(
[n]p,q

qn−1υpn−2

)2

G1
n,p,q

(
φ, p2υ

)
−

p[n]p,q[n − 1]p,q + [n − 1]2p,q

qn−1υpn−2

G1
n−1,p,q

(
φ, p2υ

)
+

[n − 1]p,q[n − 2]p,q

q2n−3υp2n−3 G1
n−2,p,q

(
φ, p2υ

)
.

Proof. To prove this theorem, we insert D2
p,q φ inside the integral sign of (7) and employ

Theorem 1 to write

G1
n,p,q

(
D2

p,q φ, υ
)

= A
∫ ∞

0
tn−1

(
D2

p,q φ
)

Ep,q

(
−qnt

υ

)
dp,qt

= A
∫ ∞

0
tn−1Dp,q

(
Dp,q φ

)
Ep,q

(
−qnt

υ

)
dp,qt

=
[n]p,q

qn−1υpn−2 G1
n,p,q

(
Dp,q φ, pυ

)
−

[n − 1]p,q

qn−1spn−1 G1
n−1,p,q

(
Dp,q φ

′
, pυ
)

=
[n]p,q

qn−1υpn−2

(
n

qn−1υpn−2 G1
n,p,q

(
φ, p2υ

)
−

[n − 1]p,q

qn−1υpn−1 G1
n−1,p,q

(
φ, p2υ

))

−
[n − 1]p,q

qn−1υpn−1

(
[n − 1]p,q

qn−2υpn−3 G1
n−1,p,q

(
φ, p2υ

)
− n − 2

qn−2υpn−2 G1
n−2,p,q

(
φ, p2υ

))
.

Consequently, performing calculations on the previous equation yields
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G1
n,p,q

(
D2

p,q φ, υ
)

=

(
[n]p,q

qn−1υpn−2

)2

G1
n,p,q

(
φ, p2υ

)
−

[n]p,q[n − 1]p,q

qn−1υpn−1 pn−2 G1
n−1,p,q

(
φ, p2υ

)

−

(
[n − 1]p,q

)2

qn−1qn−2υpn−1 pn−3 G1
n−1,p,q

(
φ, p2υ

)
+(

[n − 1]p,q[n − 2]p,q

qn−1qn−2υpn−1 pn−2 G1
n−2,p,q

(
φ, p2υ

))

=

(
[n]p,q

qn−1υpn−2

)2

G1
n,p,q

(
φ, p2υ

)
−(

pn−2[n]p,q[n − 1]p,q + [n − 1]2p,q pn−3qn−2

qn−1qn−2υpn−1 pn−3

)
G1

n−1,p,q

(
φ, p2υ

)
+

[n − 1]p,q[n − 2]p,q

qn−1qn−2υpn−1 pn−2 G1
n−2,p,q

(
φ, p2υ

)
.

Additional simplifications result in

G1
n,p,q

(
D2

p,q φ, υ
)

=

(
[n]p,q

qn−1υpn−2

)2

G1
n,p,q

(
φ, p2υ

)
−

p[n]p,q[n − 1]p,q + [n − 1]2p,q

qn−1υpn−2

G1
n−1,p,q

(
φ, p2υ

)
+

[n − 1]p,q[n − 2]p,q

q2n−3υp2n−3 G1
n−2,p,q

(
φ, p2υ

)
.

The proof is ended.

Hereafter, we present subsequent pairs of definitions of convolution products.

Definition 2. Denote by
p,q
∗ the (p, q)-convolution product defined between two functions θ1 and

θ2 as (
θ1

p,q
∗ θ2

)
(ϵ) =

∫ ∞

0
θ1

(
ϵt−1

)
θ2(t)t−1dp,qt (23)

provided the integral part exists.

Next, an additional convolution product that aligns with
p,q
∗ is as follows:

Definition 3. Let θ1 and θ2 be two functions. Then, the (p, q)-convolution product † between θ1
and θ2 is defined as

(θ1†θ2)(ϵ) =
∫ ∞

0
tk−1θ1

( ϵ

t

)
θ2(t)dp,qt. (24)

The p, q-convolution theorem of G1
n,p,q is now obtained as follows.

Theorem 4. Let
p,q
∗ and † be the (p, q)-convolution products defined by (23) and (24), respectively.

Then, the (p, q)-convolution theorem of G1
n,p,q is defined for two functions θ1 and θ2 by

G1
n,p,q

(
θ1

p,q
∗ θ2

)
(ϵ) =

(
G1

n,p,qθ1†θ2

)
(ϵ).

Proof. Owing to the theorem’s hypothesis as above, we write

G1
n,p,q

(
θ1

p,q
∗ θ2

)
(ϵ) = A

∫ ∞

0

(
θ1

p,q
∗ θ2

)
(ξ)ξn−1Eq

(
−nqξ

ϵ

)
dp,qξ,
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where A = nn

ϵnΓp,q(n)
. Hence, inserting the value of the operation in (23) reveals

G1
n,p,q

(
θ1

p,q
∗ θ2

)
(ϵ) = A

∫ ∞

0

(∫ ∞

0
t−1θ1

(
ξ

t

)
θ2(t)dp,qt

)
ξn−1Eq

(
−nqξ

ϵ

)
dp,qξ. (25)

Therefore, by using the change in variables
ξ

t
= w and performing basic calculations on

(25) by taking into account (24), we obtain

G1
n,p,q

(
θ1

p,q
∗ θ2

)
(ϵ) = A

∫ ∞

0

∫ ∞

0
tn−1θ(w)θ2(t)dp,qtwn−1Eq

(
−nqwt

ϵ

)
dp,qw

i.e. = A
∫ ∞

0
tn−1θ2(t)

(∫ ∞

0
θ1(w)wn−1Eq

(
−kqwt

ϵ

)
dp,qw

)
dp,qt

i.e. =
∫ ∞

0
tn−1θ2(t)G1

n,p,qθ1

( ϵ

t

)
dp,qt

i.e. =
(

G1
n,p,qθ1†θ2

)
(ϵ),

where † has the significance of (24). The proof is ended.

4. (p, q)-Gamma Integral of Elementary Functions

This section presents definitions and discusses characteristics of (p, q)-gamma integrals
as well as (p, q)-analogs of exponential functions, trigonometric functions, power functions,
and some hyperbolic functions. Further, it applies the (p, q)-analog to some unit step function.

Theorem 5. Let G1
n,p,q and G2

n,p,q have their usual meaning in (17) and (18), respectively. Then,
we have

(i) G1
n,p,q

(
t1−n, υ

)
=

[n]n−1
p,q

υn−1Γp,q(n)
(ii) G2

n,p,q

(
t1−n, υ

)
=

[n]n−1
p,q

υn−1Γp,q(n)
. (26)

Proof. Let the assumption of the theorem hold. Then, by the (p, q)-gamma integral (17),
we find that

G1
n,p,q

(
t1−n, υ

)
=

[n]np,q

υnΓp,q(n)

∫ ∞

0
Ep,q

(
−qnt

υ

)
dp,qt.

Therefore, by using the scaling property of the (p, q)-integrals∫ ∞

0
f (at)dp,qt =

1
a

∫ ∞

0
f (t)dp,qt, a ∈ R,

we obtain
G1

n,p,q

(
t1−n, υ

)
= A

υ

n

∫ ∞

0
Ep,q(−qt)dp,qt, (27)

where A = nn

υnΓp,q(n)
. Hence, by (13) we rewrite (27) in the form

G1
n,p,q

(
t1−n, υ

)
=

[n]np,q

υnΓp,q(n)
−υ

n

∫ ∞

0
Dp,qEp,q(−t)dp,qt. (28)

Thus, (28) can be expressed as
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G1
n,p,q

(
t1−n, υ

)
=

[n]np,q

υnΓp,q(n)
−υ

n
Ep,q(−t)

∣∣∞
0

=
[n]np,q

υnΓp,q(n)
−υ

n
(0 − 1)

=
[n]np,q

υnΓp,q(n)
υ

[n]p,q
.

This proves the first part. To prove the second part, for A = nn

υnΓp,q(n)
, we note that

G2
n,p,q

(
t1−n, υ

)
= A

∫ ∞

0
ep,q

(
−pnt

υ

)
dp,qt

= A
(
−n
υ

)
ep,q

(
−nt

υ

)∣∣∣∣∞
0

=
[n]np,q

υnΓp,q(n)
υ

[n]p,q
.

The proof is ended.

Theorem 6. Let G1
n,p,q have its usual meaning given by (17), then we have

(i) G1
n,p,q(1, υ) =

υ[n − 1]p,q

pn−1[n]p,q
G1

n,p,q

(
t−1, υ

)
. (ii) G1

n,p,q(t, υ) =
υ

pn G1
n,p,q(1, υ).

Proof. From the definition of G1
n,p,q presented in (17) and inserting pn−1 inside the integral

part, we have that

G1
n,p,q(1, υ) = A

∫ ∞

0
tn−1Ep,q

(
−qnt

υ

)
dp,qt =

A
pn−1

∫ ∞

0
(pt)n−1Ep,q

(
−qnt

υ

)
dp,qt.

By rearranging the preceding equation in terms of a derivative of an (p, q)-exponential
function we obtain

G1
n,p,q(1, υ) =

A
pn−1

∫ ∞

0
(pt)n−1

(
−υ

n

)
Dp,qEp,q

(
−nt

υ

)
dp,qt. (29)

That is, upon using the (p, q)-integration by parts (7) and simplifying the the obtained
result, we rewrite the preceding equation in the form

G1
n,p,q(1, υ) =

−Aυ

pn−1[n]p,q
tn−1Ep,q

(
−nt

υ

)∣∣∣∣∞
t=0

− −Aυ

pn−1n

∫ ∞

0
Ep,q

(
−nqt

υ

)
(n − 1)tn−2dp,qt

=
−Aυ

pn−1[n]p,q

(
(0 − 0)− (n − 1)

A
A
∫ ∞

0
t(n−1)−1Ep,q

(
−nqt

υ

)
dp,qt

)

=
υ[n − 1]p,q

pn−1[n]p,q

(
A
∫ ∞

0
t−1t(n−1)Ep,q

(
−nqt

υ

)
dp,qt

)

=
υ[n − 1]p,q

pn−1[n]p,q
G1

n,p,q

(
t−1, υ

)
.

This proves the first part. To prove the second part, we employ (7) and insert pn under the
integral sign to have



Symmetry 2024, 16, 882 10 of 16

G1
n,p,q(t, υ) = A

∫ ∞

0
ttn−1Ep,q

(
−qnt

υ

)
dp,qt

= A
∫ ∞

0
tnEp,q

(
−qnt

υ

)
dp,qt

=
A
pn

∫ ∞

0
(tp)nEp,q

(
−qnt

υ

)
dp,qt

=
A
pn

∫ ∞

0
(tp)n

(
− υ

n

)
Dp,qEp,q

(
−nt

υ

)
dp,qt.

Therefore, computations and the (p, q)-integration by parts (7) yield

G1
n,p,q(t, υ) = − υA

[n]p,q pn

∫ ∞

0
(tp)nDp,qEp,q

(
−nt

υ

)
dp,qt

=
υA

[n]p,q pn

(
tnEp,q

(
−nt

υ

)∣∣∣∣∞
0
−
∫ ∞

0
[n]p,qtn−1Ep,q

(
−nqt

υ

)
dp,qt

)

=
υ[n]p,q

[n]p,q pn

(
A
∫ ∞

0
tn−1Ep,q

(
−nqt

υ

)
dp,qt

)
.

Hence, we have obtained
G1

n,p,q(t, υ) =
υ

pn G1
n,p,q(1, υ). (30)

The proof is ended.

Following corollary is a straightforward consequence of Theorem 4.

Corollary 1. Let G1
n,p,q have its usual meaning given by (17), then we have

(i) G1
n,p,q(1, υ) =

p−n( n−1
2 )Aυ[n − 1]p,q

pn−1[n]p,q
Γp, nq

υ
(n − 1). (ii) G1

n,p,q(t, υ) = p−n (n−1)
2

Aυ

p2 Γp, nq
υ
(n).

Theorem 7. Let G1
n,p,q and G2

n,p,q have their usual meaning given by (17) and (18), respectively.
Then, we have

(i) G1
n,p,q

(
t2, υ

)
=

υ[n + 1]p,q

[n]p,q p(n+1)
G1

n,p,q(t, υ).

(ii) G1
n,p,q

(
tk, υ

)
=

[n]p,q[n − 1 + k]p,q

υp(n−1+k)
G1

n,p,q

(
tk−1, υ

)
, k = 0, 1, 2, . . . .

(iii) G2
n,p,q

(
t2, υ

)
=

υ[n + 1]p,q

nq(n+1)
G1

n,p,q(t, υ).

(iv) G2
n,p,q

(
tk, υ

)
=

[n]p,q[n − 1 + k]p,q

υq(n−1+k)
G1

n,p,q

(
tk−1, υ

)
, k = 0, 1, 2, . . . .

Proof. To prove (i). By considering the definition of G1
n,p,q presented in (7) and the

(p, q)-derivative of Ep,q given by (13) we write

G1
n,p,q

(
t2, υ

)
= A

∫ ∞

0
t2tn−1Ep,q

(
−qnt

υ

)
dp,qt

= A
∫ ∞

0
tn+1Ep,q

(
−qnt

υ

)
dp,qt

=
A

p(n+1)

∫ ∞

0
(pt)n+1Ep,q

(
−qnt

υ

)
dp,qt.
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Hence, we have obtained

G1
n,p,q

(
t2, υ

)
=

A
p(n+1)

(
−υ

n

) ∫ ∞

0
(pt)n+1Dp,qEp,q

(
−nt

υ

)
dp,qt. (31)

Thus, the (p, q)-integration by part (7) gives

G1
n,p,q

(
t2, υ

)
=

(−υ)

np(n+1)
A
(

tn+1Ep,q

(
−nt

υ

)∣∣∣∣∞
0
−
∫ ∞

0
Ep,q

(
−nqt

υ

)
(n + 1)tndp,qt

)
=

υ[n + 1]p,q

np(n+1)
A
∫ ∞

0
tnEp,q

(
−nqt

υ

)
dp,qt

=
υ[n + 1]p,q

[n]p,q p(n+1)
G1

n,p,q(t, υ)..

In a similar vein, we expand our work to the tk, k = 0, 1, 2, . . . to obtain (ii).

[n]p,q[n − 1 + k]p,q

υp(n−1+k)
G1

n,p,q

(
tk−1, υ

)
, k = 0, 1, 2, . . . . (32)

Once again, we proceed to establish the (iii) and (iv) parts. For the (iv) part we may write

[n]p,q[n − 1 + k]p,q

υq(n−1+k)
G1

n,p,q

(
tk−1, υ

)
, k = 0, 1, 2, . . . . (33)

This ends the proof of the theorem.

In terms of the gamma concept, the above theorem can be stated as follows.

Corollary 2. Let G1
n,p,q and G2

n,p,q have their usual meaning given by (17) and (18), respectively.
Then, we have

(i) G1
n,p,q

(
t2, υ

)
=

υ[n + 1]p,q A

[n]p,q p(n+1)
p−n(n−1)Γp, nq

υ
(n + 1).

(ii) G1
n,p,q

(
tk, υ

)
=

υ[n − 1 + k]p,q

[n]p,q p(n−1+k)
p

−n(n−1)
2 Γ

p,
[n]p,qq

υ

(n + k − 1).

(iii) G2
n,p,q

(
t2, υ

)
=

υ[n + 1]p,q A

[n]p,qq(n+1)
q−n(n−1)Γ np

υ ,q(n + 1).

(iv) G2
n,p,q

(
tk, υ

)
=

[n]p,q[n − 1 + k]p,q

υq[n−1+k]p,q
q
−n(n−1)

2 Γ np
υ ,q(n + k − 1).

Theorem 8. Let G1
n,p,q have the significance of (17). Then, its application to ep,q and Ep,q is

given by

(i) G1
n,p,q

(
ep,q(at), υ

)
=

∞

∑
k=0

p(
k
2)ak

[k]p,q!

(
G1

n,p,qtk, υ
)

.

(ii) G1
n,p,q

(
Ep,q(at), υ

)
=

∞

∑
k=0

q(
k
2)ak

[k]p,q!
G1

n,p,q

(
tk, υ

)
.

Proof. From the definitions of G1
n,p,q and ep,q and simplifying we have
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G1
n,p,q

(
ep,q(at), υ

)
= A

∫ ∞

0
tn−1ep,q(at)Ep,q

(
−qnt

υ

)
dp,qt

= A
∫ ∞

0
tn−1Ep,q

(
−qnt

υ

) ∞

∑
k=0

p(
k
2)(at)k

[k]p,q!
dp,qt

=
∞

∑
k=0

p(
k
2)ak

[k]pq!

(
A
∫ ∞

0
tn−1tkEp,q

(
−qnt

υ

)
dp,qt

)
.

Hence, we have obtained

G1
n,p,q

(
ep,q(at), υ

)
=

∞

∑
k=0

p(
k
2)ak

[k]p,q!

(
G1

n,p,qtk, υ
)

. (34)

To prove the second part (ii) we have

G1
n,p,q

(
Epq(at), υ

)
= A

∫ ∞

0
tn−1E(at)Ep,q

(
−qnt

υ

)
dp,qt

=
∞

∑
k=0

q(
k
2)ak

[k]p,q!
G1

n,p,q

(
tk, υ

)
.

Similarly, the following theorem can be established.

Theorem 9. Let G2
n,p,q have their usual meaning given by (18). Then, we have

(i) G2
n,p,q

(
ep,q(at), υ

)
=

∞

∑
k=0

p(
k
2)ak

[k]p,q!
G2

n,p,q

(
tk, υ

)
.

(ii) G2
n,p,q

(
Ep,q(at), υ

)
=

∞

∑
k=0

q(
k
2)ak

[k]p,q!
G2

n,p,q

(
tk, υ

)
.

Theorem 10. Let G1
n,p,q and G2

n,p,q have their usual meaning given by (17) and (18), respectively.
Then, we have

(i) G1
n,p,q

(
cosp,q(at, υ)

)
= ∑∞

k=0(−1)k p2k2

[2k]p,q!
G1

n,p,q

(
t2k, υ

)
.

(ii) G1
n,p,q

(
Cosp,q(at, υ)

)
= ∑∞

k=0(−1)k p2k2 a2k

[2k]p,q!
G1

n,p,q

(
t2k, υ

)
.

(iii) G1
n,p,q

(
sinp,q(at), υ

)
= ∑∞

k=0(−1)k p
p
(2k+1

2 )
a2k+1

[2k + 1]p,q!
G1

n,p,q

(
t2k+1, υ

)
.

(iv) G1
n,p,q

(
Sinp,q(at), υ

)
= ∑∞

k=0(−1)k q(
2k+1

2 )

[2k + 1]p,q!
a2k+1G1

n,p,q

(
t2k+1, υ

)
.

Proof. Proof of Part (i), and by (17) and the
fact that [40]

cosp,q(at) =
ep,q(iat) + ep,q(−iat)

2
=

∞

∑
k=0

(−1)k p(
2k
2 )

[2k]p,q!
a2kt2k (35)

we have
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G1
n,p,q

(
cosp,q(at, υ)

)
= A

∫ ∞

0
cos(at)tn−1Ep,q

(
−nqt

υ

)
dp,qt

=
∞

∑
k=0

(−1)k p(
2k
2 )

[2k]!
a2k A

∫ ∞

0
t2ktn−1Ep,q

(
−nqt

υ
dp,qt

)

=
∞

∑
k=0

(−1)k p(
2k
2 )

[2k]p,q!
G1

n,p,q

(
t2k, υ

)
.

To prove part (ii), we use (17) and the fact that [40]

Cosp,q(at) =
Ep,q(iat) + Ep,q(−iat)

2
=

∞

∑
k=0

(−1)k p(
2k
2 )

[2k]p,q!
a2kt2k (36)

to obtain

G1
n,p,q

(
Cosp,q(at, υ)

)
=

∞

∑
k=0

(−1)k p(
2k
2 )a2k

[2k]p,q!
G1

n,p,q

(
t2k, υ

)
.

Proving (iii) and (iv), we use the facts [40]

sinp,q(at) =
ep,q(iat)− ep,q(−iat)

2i
=

∞

∑
k=0

(−1)k p(
2k+1

2 )a2k+1

[2k + 1]p,q!
t2k+1 (37)

and

Sinp,q(at) =
Ep,q(iat)− Ep,q(−iat)

2i
=

∞

∑
k=0

(−1)k q(
2k+1

2 )

[2k + 1]p,q!
a2k+1t2k+1. (38)

The proof is ended. The above-mentioned findings about G2
n,p,q of the trigonometric

functions may be shown using analogous proof.

Definition 4. The (p, q)-hyperbolic cosine and sine functions are defined by [39]

(i) coshp,q(at) =
ep,q(at) + ep,q(−at)

2
= ∑∞

k=0
p(

2k
2 )

[2k]p,q!
a2kt2k.

(ii) Coshp,q(at) =
Ep,q(at) + Ep,q(−at)

2
= ∑∞

k=0
p(

2k
2 )

[2k]p,q!
a2kt2k.

(iii) sinhp,q(at) =
ep,q(at)− ep,q(−at)

2
= ∑∞

k=0
p(

2k+1
2 )

[2k + 1]p,q!
a2k+1t2k+1.

(iv) Sinhp,q(at) =
Ep,q(at)− Ep,q(−at)

2
= ∑∞

k=0
q(

2k+1
2 )

[2k + 1]p,q!
a2k+1t2k+1.

By using a similar technique, readers can easily expand the work to (p, q)-hyperbolic cosine
and sine functions.

Theorem 11. Let u(t) =
{

1, t ≥ 0
0, t < 0

be the unit step function. Then, we have

G1
n,p,q(u(t), υ) =

υ[n − 1]p,q

[n]p,q pn−1 G1
n,p,q

(
t−1, υ

)
. (39)

Proof. By considering the definition (17) and that of the unit step function, we obtain
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G1
n,p,q(u(t), υ) = A

∫ ∞

0
tn−1u(t)Ep,q

(
−qnt

υ

)
dp,qt

=
A

pn−1

∫ ∞

0
(pt)n−1u(t)Ep,q

(
−qnt

υ

)
dp,qt

= −A
υ

npn−1

∫ ∞

0
(pt)n−1Dp,qEp,q

(
−nt

υ

)
dp,qt.

Hence, utilizing the concept of the integration by parts, we obtain

G1
n,p,q(u(t), υ) =

−Aυ

[n]p,q pn−1

(
tn−1Ep,q

(
−nt

υ

)∣∣∣∣∞
0
−
∫ ∞

0
Ep,q

(
−nqt

υ

)(
Dp,qtn−1

)
dp,qt

)
=

−Aυ

[n]p,q pn−1

(
−
∫ ∞

0
[n − 1]p,qtn−2Ep,q

(
−nqt

υ

)
dp,qt

)
.

Therefore, the definition of G1
n,p,q suggests we write

G1
n,p,q(u(t), υ) =

υ[n − 1]p,q

[n − 1]p,q pn−1 G1
n,p,q

(
t−1, υ

)
. (40)

The proof is ended.

A simple appropriate change on (40) leads to the following result.

Corollary 3. Let u be the unit step function. Then, we have

G1
n,p,q(u(t), υ) =

υ[n − 1]p,q

[n]p,q pn−1 Ap−n(n−1)Γp, qn
υ
(n − 1).

5. Conclusions

In this article, the gamma integral operator’s (p, q)-analogs are presented, and their
expansion to power functions, (p, q)-exponential functions, and (p, q)-trigonometric functions
are covered. It also establishes results about the use of the (p, q)-analogs with unit
step functions and first- and second-order (p, q)-differential operators. In addition, two
(p, q)-convolution theorems are established and two (p, q)-convolution products are presented
for the given (p, q)-analogs.
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